The Selke field site, Central Germany

HELMHOLTZ | CENTRE FOR ENVIRONMENTAL RESEARCH – UFZ

Objectives and Research Questions

- Detailed understanding of groundwater – river water exchange dynamics at the meander to reach scale
- Quantifying water and solute fluxes across this interface
- Delineating controls of turnover of redox-sensitive compounds (carbon, oxygen, nitrate) by aerobic and anaerobic reactions
- Spatial extent and temporal dynamics of water exchange, solute

The Selke field site – part of the TERENO observatories

Elevated nitrate concentrations

transport and reactive zones

△ Sewage plant data source: LHW - Gewässerkundlichen Landesdienst 2009 editor: S. Musolff, Dep. of Hydrogeology

Aquifer characterization

Hydrogeology

Travel times | Aerobic respiration

Denitrification

Time series analysis of electrical conductivity and dissolved oxygen

Numerical modeling

Synthesis and Outlook

References

Identification of denitrification by ¹⁵N & ¹⁸O isotopes

Simulation of groundwater flow and solute transport

Calibration against groundwater levels and salt tracer breakthrough curves

Main findings

- Highly conductive riparian aquifer built up of fluvial sediments (K=3·10⁻³ m/s)
 Highest permeability in the upper 1-2 m
 Groundwater flow velocities of up to 10 m/d
 Alternating losing and gaining sections along the river reach, depending on river discharge and channel morphology
- Strong seasonal effects on aerobic and anaerobic reactions
- Highest reactivity of the riparian zone in the vicinity of the river, presumably by bioavailable carbon and heat supply of infiltrating river water

Future research

- Linking aquifer heterogeneity, (preferential flow paths), solute transport and reaction (mixing vs. reaction)
- Evaluating sensitivity of discharge events on reaction by e.g. solute mobilization of bioavailable carbon
 Effect of variation of solute
 - concentration over depth
- Reactive transport model of the reach, implementing aquifer texture derived
- from geophysics
- Effect of riparian vegetation on preferential flow paths and nitrogen transformation

Notes:

.