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ABSTRACT

Aim Assessing the relationship between a spatial process and environmental

variables as a function of spatial scale is a challenging problem. Therefore,

there is a need for a valid and reliable tool to examine and evaluate scale

dependencies in biogeography, macroecology and other earth sciences.

Location Central Europe (latitude 43.99°–54.22° N, longitude 4.79°–
15.02° E).

Methods We present a method for applying two-dimensional wavelet analysis

to a generalized linear model. This scale-specific regression is combined with a

multimodel inference approach evaluating the relative importance of several

environmental variables across different spatial scales. We apply this method to

data of climate, topographic and land cover variables to explain variation in

annual greening of vegetation (i.e. phenology) in Central Europe.

Results Land use is more important to explain the variation in greening than

climate at smaller resolution while climate is more important at larger resolu-

tion with a shift at c. 1000 km2.

Main conclusions To the best of our knowledge, this is the first study analys-

ing the scale dependency of an ecosystem process, clearly distinguishing

between the different components of scale, namely grain, focus and extent. The

obtained results demonstrate that our newly proposed method is particularly

suitable for studying scale dependencies of various spatial processes on envi-

ronmental drivers keeping grain and extent constant and changing focus (i.e.

resolution).

Keywords

discrete wavelet transform, generalized linear model, multimodel inference,

remote-sensing signal, spatial scales, vegetation period

INTRODUCTION

The importance of spatial patterns and spatial scales has

often been cited as a key issue in biogeography, macroecol-

ogy, and beyond that, all earth sciences (Levin, 1992; Dale,

1999; Wu & Hobbs, 2002; Fortin & Dale, 2005; Schr€oder &

Seppelt, 2006). Data collection for biogeographical and envi-

ronmental data is frequently carried out with reference to a

gridded map of a specific resolution. A statistical model

based on these data will provide statistical inferences at this

specific spatial scale. Because different (e.g. biological) pro-

cesses act at different scales, multiple relationships are scale-

specific as well (Pearson & Dawson, 2003; Pearson et al.,

2004; Guisan & Thuiller, 2005; Keil et al., 2012). Hence, the

selection of scale for data collection and inference is crucial

in statistical modelling. In general, however, different scales

will be relevant in such multiple relationships and some of

them will be different from the pre-specified collection unit

(i.e. focus and extent of analysis sensu Scheiner et al. (2000);

see below). As a consequence, conclusions based on regres-

sions of these data, that is, its parameter estimates, hypothe-

ses tests and P-values, may be misleading and can result in

incorrect inferences. At least, this is the case if we ignore that

these conclusions are restricted to a particular scale and dis-

regard the complexity and multi-scaled structure of the

problem. Therefore, there is a need for a valid and reliable
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tool to examine and evaluate scale dependencies (Wu &

Hobbs, 2002; Borcard et al., 2004). The principal coordinates

of neighbour matrices (PCNM) analysis (e.g. Borcard et al.,

2004) as well as its generalization, the Moran’s eigenvector

maps (MEM) approach (Dray et al., 2006), provide a spec-

tral decomposition of the spatial relationships. Both methods

have in common that the eigenvectors used for spatial filter-

ing purposes are sinusoidal waves of increasing frequency in

case of regular sampling. Hence, the methods are basically

statistical versions of Fourier analysis. Accordingly, n � 1

eigenvectors are generally needed in order to decompose a

centred series of n observations and to completely capture its

variability. In the general case of a large number n, however,

the question arises as to how to identify the main scales of

spatial variation and to select appropriate subsets of eigen-

vectors (Jombart et al., 2009).

To overcome these problems, recent publications recom-

mend the use of wavelet transforms as a tool for scale-speci-

fic regression analysis (Dong et al., 2008; Lookingbill et al.,

2011), which is expected to be useful to identify scale-specific

relationships between predictor and response variables, and

thus to provide deeper insights in multiple scale dependen-

cies. Wavelet analysis is an extension and refinement of

Fourier analysis (Percival & Walden, 2000; Stark, 2005). Like

Fourier analysis, it can be used to detect scale-specific (or

frequency-specific) features of a signal. However, different

from Fourier analysis, it is able to make any necessary local

adjustments, providing different coefficients for different

positions (or times). In fact, a Fourier analysis provides fre-

quency or scale components whose amplitudes are the same

at all positions (or times), whereas a wavelet analysis is able

to provide additional information about which component is

present at which spatial (or time) interval. This is because

Fourier analyses are based on sinusoidal waves, whereas

wavelet analyses use so-called wavelets, that is, small waves

visualizable as localized oscillations (Daubechies, 1992; Tor-

rence & Compo, 1998; Cazelles et al., 2008). Due to their

much better local adaptation, such a wavelet analysis requires

only a few frequency components to completely capture the

variability of a signal.

Different approaches have been proposed for applying

wavelet transforms to multiple linear regressions. On the one

hand, Keitt & Urban (2005) developed a scale-dependent

regression and found evidence for scale-specific relationships

and inferences regarding predictor variables and the response

variable. However, their approach is limited in its application

to one-dimensional data analyses and response vectors of

Gaussian distribution. On the other hand, wavelets have been

used to remove spatial autocorrelation in multiple regres-

sions affected by correlated errors (Carl & K€uhn, 2008,

2010). Our method (Carl & K€uhn, 2010) allows regular two-

dimensional (2-D) sampling grids as well as different distri-

butions (e.g. binomial or Poisson). In both cases, it has

proved fruitful to insert wavelet transforms into the

regression analysis of spatial data. Most recently, Ma &

Zhang (2015) as well as Ye et al. (2015) followed the idea

and performed a regression analysis using 2-D wavelet trans-

forms to describe scale-specific patterns. Their results have

demonstrated that such regressions are appropriate tools for

exploring spatial variations at multiple spatial scales. How-

ever, the approaches described by Ma & Zhang (2015) and

Ye et al. (2015) are only applicable to Gaussian response

models and therefore exclude, for example, logistic regres-

sions. Moreover, the fact alone that different slopes at differ-

ent scales can be discovered by means of wavelets is not

sufficient. Ma & Zhang (2015) ranked explanatory variables

at a given spatial scale in terms of the magnitude of the stan-

dardized coefficients. Ranking without any rank order

weights is, however, a rather poor method. Instead, the

regression analysis should be followed by any assessment,

that is, the calculation of an appropriate index for the

strength of evidence. Also, Ma & Zhang (2015) scaled species

richness. Since species richness does not scale additively and

cannot be averaged, wavelets are inappropriate to scale such

data. Therefore, the major objective of this study is to com-

bine the advantages of the previous methods and to develop

a 2-D wavelet regression applicable to various distributions.

Moreover, our wavelet multiresolution regression will lead to

scale-dependent inferences by means of rank order weights.

Analysing scale dependency, one has to be very clear

about the four different components of scale (Scheiner et al.,

2000): (1) sample unit, (2) grain, (3) focus and (4) extent.

Sample unit refers to the spatial dimension of the collection

unit (e.g. sampling plot). Grain is the smallest unit to which

all sample units are standardized for a specific analysis (i.e.

finest resolution). The units of grain can then be aggregated

to coarser units of analysis, that is, focus (i.e. coarser resolu-

tion). Extent in this context is the complete geographical

area sampled. The main advantage of scale-specific wavelet

regression is that it differs from previous methods, which

simply upscale data by averaging aggregated cells and thus

regress the variables of enlarged grain size. Instead, wavelet

analysis is able to extract scale-specific variations of both

dependent and independent variables. Therefore, a wavelet

regression can measure how a change in environmental vari-

ables at a given resolution (i.e. focus) influences change in

the response variable at the same resolution (Ye et al.,

2015). To illustrate our new up-scaling method, it is neces-

sary to use data at medium to large extent and fine sample

unit because sample unit acts as a preset for the grain (i.e.

finest resolution) in the analysis. Scale dependency is then

studied by leaving extent and grain constant and aggregating

2j 9 2j (with j being a level of analysis) grains to coarser

resolutions (i.e. foci). Hence, to discuss scale dependency,

that is, alterations in the relative importance of different

environmental factors caused by increasingly coarser resolu-

tions (foci), we need data collected over a regular grid con-

sisting of sufficient grid cells. Therefore, in our case study,

we examine data sampled on a map of 1024 9 1024 grid

cells at 0.01° 9 0.01° resolution (grain), that is,

c. 1 9 1 km2, in Central Europe. We focus on the relation-

ship of vegetation greening to climate, topography and land
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use. Remote-sensing vegetation indices based on satellite

observations indicating the vegetation activity (Yang et al.,

2012) were used to estimate the vegetation period per year

(White et al., 2003). We use vegetation period as a response

variable that is regressed on climate, topographic and land

use data. To the best of our knowledge, this is the first study

at intermediate extent and fine grain (and hence large sam-

ple size), which covers a very large range of different foci,

clearly differentiating among the different components of

scale. In principle, it can be assumed that: (1) The impact of

climate, topographic as well as land use variables on vegeta-

tion period is scale-dependent. (2) Land use variables are

more relevant in relation to vegetation period than climate

and topographic ones for models with fine resolution, and

vice versa for those with coarse resolution (cf. Pearson et al.,

2004). Hence, our goal is to demonstrate how variations or

fluctuations at multiple spatial scales can be systematically

analysed, and to draw specific conclusions regarding these

assumptions.

METHODS

Wavelets

The crucial idea behind wavelet analysis can be formulated

as follows: wavelets are small waves, that is, localized oscillat-

ing functions (Daubechies, 1992; Ma & Zhang, 2015). In a

one-dimensional spatial context, one can imagine that such a

brief oscillation is locally aligned with a segment of the given

transect, thus enabling a comparison between template

(wavelet) and original (transect). If there is high similarity,

then the absolute value of the corresponding wavelet coeffi-

cient is high. If there is low similarity, it is low (Dale &

Mah, 1998; Csillag & Kabos, 2002; Ye et al., 2015). By trans-

lation, that is, shifting the wavelet along the transect line,

one is able to stepwise evaluate the whole transect. Moreover,

this transect can be scanned several times by gradually

stretched or compressed wavelets, and thus varying in width

and oscillating behaviour, which corresponds to scale or res-

olution. Based on a set of wavelets derived from a prototype

(i.e. mother wavelet) and generated by scaling and transla-

tion of this original, it is possible to capture the complete

information of any transect. Such wavelets of different dila-

tions and locations and their associated scaling functions

constitute the so-called wavelet family (Daubechies, 1992).

Each wavelet acts as both a window and a filter. One can

show that the information of any discrete function f is cod-

able by a wavelet transform, that is, it can be captured by

coefficients belonging to a certain wavelet family. If the used

wavelet family is a family of orthogonal wavelets, then there

exists a minimal set of wavelets, enabling a complete infor-

mation transfer (Mallat, 1989; Percival & Walden, 2000).

The number and kind of coefficients in discrete wavelet

transforms (DWT) depends on the number and kind of

wavelets used in the analysis, and thus not only on the num-

ber of observations, but also on a pre-specified number of

resolution levels (Bruce & Gao, 1996). There are two kinds

of coefficients: detail and smooth ones, reflecting different

oscillating behaviour of mother wavelets and scaling func-

tions and representing the highly varying (detailed) and

slowly varying (smooth) parts of function f respectively

(Bruce & Gao, 1996; Ma & Zhang, 2015). Subsequently, it is

possible to reconstruct the original function f by applying

the back transform, that is, the inverse wavelet transform.

Moreover, by means of wavelet transform and back trans-

form, one is able to decompose a function into orthogonal

components at different scales. These components can be

visualized as parts of the function at different resolutions.

Therefore, this method is called multiresolution analysis

(MRA) (Mallat, 1989; Dong et al., 2008). The MRA algo-

rithm always provides detail components at levels gradually

incremented up to a preset limit (D1, D2, . . ., DJ) and one

smooth component at the upper level (SJ).

For illustration, we present the results of a wavelet MRA

decomposition stopped at level 3 (Fig. 1b) in comparison to

a PCNM analysis limited to four components (Fig. 1a). Both

analyses are performed on the same signal vector f, which is

a time series (or spatial transect). The example illustrates that

PCNM and wavelet decompositions differ in their ability to

detect local variations. Only in case of wavelet analysis, the

components reveal that signal variability increases with time

(or spatial variable). As a consequence, this method yields a

perfect reconstruction of the signal from just four compo-

nents. In general, wavelet analysis is locally more accurate

compared to Fourier analysis, which requires many more

components.

Two-dimensional wavelet analysis

The use of wavelets in the fields of geophysics, biology, ecol-

ogy and agriculture is rapidly developing (Kumar & Fou-

foula-Georgiou, 1997; Torrence & Compo, 1998; Dong et al.,

2008). However, most of the concepts for wavelet analysis

apply to either time signals (Cazelles et al., 2008) or one-

dimensional spatial data, which are much like time series

(Dale & Mah, 1998). The need to explore and assess images

and landscapes requires a more comprehensive, 2-D wavelet

analysis (Csillag & Kabos, 2002). The 2-D DWT enables us

to transform a data matrix into a matrix of wavelet coeffi-

cients. Therefore, 2-D wavelet analysis allows us to analyse

data such as discrete images or geographical patterns of eco-

logical or environmental variables (Csillag & Kabos, 2002).

Note that the increased dimensionality results in newly

formed wavelets. Four shapes are formed out of the two (de-

tailed and smooth) ones, which are used in case of one

dimension (i.e. mother wavelet and scaling function). These

new four types of 2-D wavelets are three mother wavelets

(applied in different directions: vertically, horizontally and

diagonally) and one scaling function. The scaling procedure

is dyadic, that is, it is a stepwise enlargement of wavelets by

scale factor 2j in both dimensions: 2j 9 2j, j = 1, 2, . . .If a

data matrix has size 2K 9 2K, then level j can range from 1
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to K without any edge effects. Therefore, the 2-D MRA

decomposition of a matrix F is

F ¼
XJ

j¼1
Dv

j þ
XJ

j¼1
Dh

j þ
XJ

j¼1
Dd

j þ SJ (1)

This means that it is an additive decomposition into 3J + 1

components, where the matrices Dj represent the detail

(namely high-frequency) parts and the matrix SJ represents

the smooth (namely low-frequency) part of matrix F (cf. also

Fig. 1b). The matrices Dv
j ;D

h
j ;D

d
j ; and SJ are linear combina-

tions of corresponding 2-D wavelets. The limit parameter J is

used to constrain the number of multiresolution compo-

nents. Note that the smooth matrix SJ exclusively emerges at

the coarsest resolution, whereas the matrices Dj accumulate

over all scales up to resolution level J. This means that, as a

scale-by-scale decomposition, the (particularly resulting)

smooth matrices can be decomposed again and again. This

finally resulting matrix SJ reflects the averaged or smoothed

part of matrix F at maximum resolution, whereas the detail

matrices Dv
j ;D

h
j ;D

d
j arising at every resolution level represent

its multiple spatial variations or fluctuations. The three

directions of 2-D wavelets are indexed by v, h and d for ver-

tical, horizontal and diagonal respectively. If index m corre-

sponds to these different spatial directions, equation (1) can

be written as follows

F ¼
X3

m¼1

XJ

j¼1
Dm

j þ SJ (2)

For our purpose, the application of a modified version of

the DWT is more appropriate. It is called the maximal overlap

DWT (MODWT) (Percival & Walden, 2000). The MODWT is

a redundant non-orthogonal transform but has the advantage

that it provides as many wavelet coefficients per scale and

wavelet-type as elements of F are given. Therefore, the wavelet

coefficients give information about which frequencies are

dominant at which positions in matrix F. The described prop-

erties (Eqs. 1 and 2) hold for DWT as well as for MODWT.

Wavelet multiresolution regression

Based on the 2-D MRA decomposition (Eq. 2), that is, the

decomposition of matrices into scale-specific subcomponents,

we are able to develop a regression technique, which allows

scale-specific regressions. Different from other methods such

as PCNM or MEM, our approach is applied to the response

variable as well as all explanatory variables in a multiple

regression. This is possible as the components of all these

variables occur in a spatial context as they were sampled in a

plane. Thus, we first must convert these vectors into matrices

reflecting the spatial layout, that is, where all the components

were sampled. Then the 2-D MRA decomposition (2) can be

applied to each matrix built in this way. Subsequently, all

scales which are not to be analysed in the model have to be

eliminated. Therefore, for instance, transform PDj

F ! PDj
F ¼

X3

m¼1
Dm

j (3)

provides a tool keeping only detail matrices of level j.

Finally, we revert to vectors (i.e. convert each matrix of

specific scale into a vector) that allow us to continue as usual
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(a)   PCNM (b)   Wavelet MRA

Figure 1 Comparison of signal decomposition and reconstruction obtained for two different methods and constructed for a time series
(or spatial transect) containing 32 observations. (a) PCNM is used to decompose the signal f (top panel) into its first four components

(mid panels) and to reconstruct the signal by the sum of these four components (lower panel). (b) Wavelet MRA is used to decompose
the same signal f (top panel) into four components (mid panels) and to reconstruct the signal by the sum of these four components

(lower panel).
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in a linear regression where y is a vector of responses and X

is a matrix of predictors. According to the above-mentioned

interpretation of detail matrices, this means that this regres-

sion, keeping only detail matrices of level j, accounts for

fluctuations or spatial variations at a specific spatial resolu-

tion (i.e. focus).

Note that this wavelet analysis is applicable not only to

normal linear models, but also to regressions in which the

response variable has a non-normal distribution. In that case,

the canonical link function is gi ¼ g lið Þ ¼ x0ib;
i = 1, 2, ���, n, with the expected value of the response being

li ¼ E yi
� �

, n is sample size, and b is a vector of unknown

parameters. The matrix

W ¼ diag v�1
ii

@li
@gi

� �2
( )

(4)

denotes a diagonal weight matrix, where the variance of the

response is A ¼ diag var yið Þf g ¼ diag viif g:
In case of generalized linear models, the process of decom-

position and scale selection needs to be restarted within each

step of the iterative procedure (Carl & K€uhn, 2010). There-

fore, the generalized iterative solution for parameter b is

bðmÞ ¼ PDj
W

1
2X

� �0
PDj

W
1
2X

� ��1

PDj
W

1
2X

� �0
PDj

W
1
2z; (5)

where

PDj
W

1
2z ¼ PDj

W
1
2Xb m�1ð Þ þ PDj

A�1
2 y � lð Þ (6)

Quality Criteria

On the one hand, it has been suggested that wavelet covari-

ance could provide a useful measure for scale-dependent

interactions between, for example, an explanatory variable

and the response variable in a regression (Kumar &

Foufoula-Georgiou, 1997; White et al., 2003). The scale-spe-

cific contributions to sample variance or covariance can be

efficiently estimated by MODWT wavelet coefficients (Lark

& Webster, 2004). The 2-D wavelet variance can be defined

as an extension to the 1-D approach as

varðjÞ ¼ 1

n

X3

m¼1

Xn

i¼1
dFimðjÞ
� �2

(7)

where dFimðjÞ are the detail wavelet coefficients of matrix F at

level j and n is the sample size. Likewise, the 2-D wavelet

covariance, which is a scale-dependent component of covari-

ance for two matrices F and G, is given by

cov jð Þ ¼ 1

n

X3

m¼1

Xn

i¼1
jdFim jð Þ � dGim jð Þj (8)

Here the matrices F and G have to be produced from vec-

tors f and g as described above. The vectors f and g have to

be standardized, to ensure that the wavelet transforms are

comparable to each other.

On the other hand, regression methods may give us deeper

insight into the variety of factors and its relations to a

response variable. Generally, regression methods do not only

aim for estimation of slope coefficients, but also for hypothe-

sis testing and P-values in order to decide whether the pre-

dictors are significant or which subset of predictors is

relevant. However, problems can arise if we want to compare

P-values of different models, in particular, models of differ-

ent sample size. This is due to the fact that the power of the

test depends on sample size (McDonald, 2009). When

decreasing sample size, the power of the test declines. As we

perform a multiscale analysis eliminating step by step scale-

specific subcomponents and thus rendering certain resolu-

tions ineffective, as a matter of fact the sample size does

change. To avoid comparisons of significance tests across

scales and instead to provide a consistently good quality cri-

terion, we use the approach of model selection based on

multimodel inference (MMI) developed by Burnham &

Anderson (2002). Our scale-dependent regression analysis

outlined above (Eqs. 5 and 6) allows us to separately

apply the method at each scale. This is required because the

set of candidate models must always be related to the same

data set. Therefore, at each scale, MMI can make statistical

inference via the full set of candidate models and model

ranking by means of Akaike’s information criterion (AIC).

In order to estimate the relative importance of a variable, so-

called Akaike weights, that is, normalized likelihoods of AIC

differences, are introduced as model weights. The sum of

Akaike weights over the subset of models that include a cer-

tain variable can then be considered as a measure for the

importance of this variable. Only these values of relative vari-

able importance, that is, relative instead of absolute values,

are the measures that are eventually used for evaluations and

comparisons across scales. In our application, it is necessary

not only to estimate regression coefficients, but also to calcu-

late an effective sample size for log-likelihoods and thus

Akaike weights. That is because most of the information in

the 1024 9 1024 grid is redundant due to the positive spatial

dependence in the data. This means that individual observa-

tions include information already present in nearby observa-

tions, so that neighbouring grid cells are highly correlated

and the effect or value of sample size is less than the number

of observations (Dale & Fortin, 2009). The estimated degree

of spatial autocorrelation can therefore be used to adjust the

sample size, that is, to determine how much smaller this

effective sample size is (Dale & Fortin, 2005). As shown by

Dale & Fortin (2009), the effective sample size neff for cor-

recting for autocorrelation can approximately be calculated

by the following formula:

neff ¼ n2

nþ 2
Pn�1

k¼1 n� kð ÞrðkÞ (9)

where r(k) is the autocorrelation at lag k calculated on n � k

pairs of observations. We use Moran’s I values of the residu-

als of the full model as a 2-D, radially symmetric approxima-

tion for the function r(k). For the redundant MODWT

based on sample size n across all levels, neff is a good

approximation for all levels.

All statistical analyses were performed using R x64 3.0.1

(R Development Core Team, 2013). The R code is given in
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Appendix S2. The tools for calculating wavelet transforms

are available in package waveslim (Whitcher, 2005). Except

where explicitly noted otherwise, the results given in the fol-

lowing sections were calculated using d4 wavelets. We tested

other types of wavelets as well, for example, Haar and d16

wavelets. These analyses yielded almost the same results (not

presented here for brevity) as those for d4 wavelets. Differ-

ences are hardly detectable, except for the highest levels

where the loss of information generally causes expanded

uncertainties.

DATA

We extracted satellite data from the MEDOKADS NOAA

AVHRR data archive provided by the Meteorological Insti-

tute of the Freie Universit€at Berlin. Signals from satellite

observations are available as so-called normalized difference

vegetation index (NDVI) values. NDVI based on the daily

reflectance in the red (Red) and near infrared (NIR) AVHRR

bands

NDVI ¼ ðNIR� RedÞ=ðNIRþ RedÞ (10)

detects the part of photosynthetically relevant radiation

absorbed by plants. Thus, NDVI is accepted as a good

indicator of the vitality and photosynthetic activity of the

vegetation, that is, NDVI indirectly indicates seasonal

changes in leaf and shoot growth and in the greenness of the

vegetation. Therefore, it can be used to estimate the length

of the vegetation period (White et al., 2003). We computed

estimates of vegetation period (see Appendix S1 in Support-

ing Information), averaged the values over the years 1989–
2007, and provided a map representative of Central Europe

(Fig. 2). This map has a resolution of 0.01∘ 9 0.01∘

(c. 1 9 1 km2) and consists of 210 9 210 = 1024 9 1024

grid cells, allowing a dyadic up-scaling from level 1 to level

10 (The original matrix can be indexed by level 0). The

selected area ranges across 10.24 degrees of both latitude and

longitude. The Alps as well as coastal regions are included.

The altitude ranges from sea level to 4300 m. Thus, the

extent of environmental variation in the region is remark-

able. Vegetation period is generally highest for the land cover

type grassland especially in southern Germany followed by

forests. Agricultural areas generally display a shorter vegeta-

tion period particularly in areas with extensive irrigation or

even controlled flooding such as rice fields in northern Italy.

Here, the satellite cannot receive vegetation signals due to

surfaces covered extensively by water until shortly before har-

vest. Elevated areas exhibit shorter vegetation periods, most

Figure 2 Map of vegetation periods in Central Europe (latitude 43.99°–54.22° N, longitude 4.79°–15.02° E). The data are estimates
based on remote-sensing vegetation indices sampled on a 1024 91024 grid at a resolution of c. 1 91 km2. The vegetation period given

in days is an average over the years 1989–2007 (greyscale to the right of the map). A map of Europe displaying the selected map section
for Central Europe is shown in the inset.
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notably for the Alps. Lakes, glaciers and bare land obviously

do not display any vegetation period.

Moreover, we extracted climate variables from the World-

Clim database Version 1.4 (Hijmans et al., 2005), elevation

data from the WorldClim data base, and land cover data from

Corine Land Cover 2006 vector data Version 17 (EEA, 2013)

and assigned them to the vegetation grid (see Appendix S1 in

Supporting Information). This enables us to use vegetation

period as the response or outcome variable for further analy-

ses. It is regressed on climate, topographic and land use data,

that is, annual mean temperature (Bio1), annual precipitation

(Bio12), altitude and the land cover categories artificial areas,

agricultural areas, forests and grass/scrublands.

RESULTS

The extent of variation as a function of increasing spatial res-

olutions is represented as wavelet variance (Eq. 7, Fig. 3a).

This procedure of up-scaling related to the resolution level

can be imagined as a two-dimensionally gradual (i.e. dyadic)

enlargement of sizes of grid cells. Roughly speaking, all vari-

ances of land use variables show decreasing values with

increasing resolution level, that is, increasing cell size, while

variances of other variables show opposite trends. This

becomes particularly evident for the levels from 1 (c. 4 km2)

to 5 (c. 25 9 25 km2 � 1000 km2 resolution), whereas

higher levels yield other results. Note that because of the loss

of information with increasing level, the levels higher than 7

provide less reliable results than others.

Wavelet covariances (Eq. 8) evaluating the relationship

between explanatory variables and response variables are

informative as well (Fig. 3b). One can say at least that both

Figs. 3a and 3b reveal that the contributions of climatic,

topographic as well as land use variables vary considerably

across resolutions. Moreover, the difference of land use vari-

ables compared to other ones is detectable in both cases. The

relevance of land use variables compared to others switches

approximately at level 5 or 6 (cell length c. 26 = 64 km, cell

size c. 4000 km2).

A more accurate analysis of the true amount of relative

variable importance can be based on 2-D MRA decomposi-

tions, scale-specific regressions and Akaike weights as

described above. This relative variable importance shows that

it indeed provides more detailed curves and thus a deeper

insight into what variances and covariances roughly reflect

(Fig. 4a). All land use variables appear clearly dominant at

the levels 3 (cell size c. 64 km2) to 5 (cell size c. 1000 km2).

The switch of importance between land use variables and

other ones occurs between level 5 and 6.

DISCUSSION

The relative variable importance visualized in Fig. 4a shows

clear and strong dependency on resolution. Thus, our first

assumption, stated at the end of the Introduction, is sup-

ported: the impact of climate, topographic as well as land

use variables on vegetation period is scale-dependent. Our

second assumption was: land use variables are more relevant

in relation to vegetation period than climate and topographic

ones for models with fine resolution, and vice versa for those

with coarse resolution. Although Fig. 3b supports this

assumption and Fig. 4a also detects this switch of variable

importance between level 5 and 6, this statement cannot be

accepted without qualification. Figure 4a provides more

details. It shows that, at resolution levels 1 and 2, tempera-

ture as climatic variable is more important than all the

2 4 6 8 10

0.
0

0.
1

0.
2

0.
3

0.
4

climatic var. − temperature
climatic var. − precipitation
topographic var. − altitude
land use var. − agriculture
land use var. − artificial area
land use var. − forest
land use var. − grass/scrub
vegetation period

2 4 6 8 10

0.
00

0.
05

0.
10

0.
15

0.
20

~ period −−− climatic var. − temperature
~ period −−− climatic var. − precipitation
~ period −−− topographic var. − altitude
~ period −−− land use var. − agriculture
~ period −−− land use var. − artificial area
~ period −−− land use var. − forest
~ period −−− land use var. − grass/scrub

W
av

el
et

 V
ar

ia
nc

e

W
av

el
et

 C
ov

ar
ia

nc
e

Level Level

(a) (b)

Figure 3 Wavelet variance (a) and covariance (b) for different variables. Levels range from 1 (cell size c. 4 km2) to 10 (coarsest

resolution, cell size c. 1,000,000 km2). (Relationships with) Land use variables are indicated by grey lines and symbols, all others are
indicated by black ones.
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others, especially than land use variables. One reason for this

could be that landscape structure and grid cell structure for

remote-sensing images are different, that is, patches of cer-

tain land use are not spatially congruent with AVHRR pixels.

This leads us to conclude that this difference between land-

scape and raster format becomes increasingly relevant at

lower levels. Note that substituting sample size n with effec-

tive sample size neff in log-likelihoods has no impact on the

ranking order in MMI, only the relative distance of weights

is reduced. A change in sample size cannot inflate the impor-

tance of a single variable, enabling it to dominate and earn

the top-ranking position. Therefore, the importance of tem-

perature at fine scales (i.e. levels 1 and 2) is probably an

artefact of misassigned land use/land cover.

On the whole, our examination of resolution-specific vari-

ability has shown that there is a marked change in the

importance of drivers of the ecosystem process of vegetation

greening at a cell length slightly above 32 km. Considering

previous knowledge (e.g. Willis & Whittaker, 2002; Pearson

& Dawson, 2003) this does not seem unexpected. Similarly

to our result, Luoto et al. (2007) found that species distribu-

tion models of birds in Finland improved notably by includ-

ing land use data in addition to climate data at resolutions

of 10 km and 20 km while at resolutions of 40 km and

80 km climate was sufficient. In this context, it is important

to note that our analyses are examinations of the scale-speci-

fic variability. Such analyses capture and evaluate resolution-

specific variations of variables and their relations, that is,

relations of local fluctuations at a given scale. This is because

the previously used wavelet analysis captures only the detail

(i.e. high-frequency) components.

However, it seems that many previous studies did not

clearly differentiate between resolution-specific (i.e. focus-

specific) variation analysis and upscaling by averaging of

aggregated cells. As explained above, one has to distinguish

between four different components of scale (Scheiner et al.,

2000): sample unit, grain, focus and extent. Willis & Whit-

taker (2002), inter alia, simply discussed the importance, very

generally, of ‘scale’, whereas Pearson & Dawson (2003) were

more concrete and translating them into different extents.

Still, it is clear that the importance of specific ecosystem pro-

cesses does not only depend on extent but also on grain and

focus. Analysing a process with a grain of 1 km2 at an extent

of 100 km2 will quite likely yield a different result than hav-

ing the same grain and continental extent. Hence, we

hypothesize that not only varying focus (i.e. resolution level)

and keeping grain and extent constant (as we did) will have

an effect but also varying grain and keeping extent constant

or keeping grain constant and varying extent will have an

effect on the hierarchy of drivers of ecosystem processes (see

also Rahbek, 2004). It hence is clear that studies using the

same data sets can come to different conclusions (Thuiller

et al., 2004; Pompe et al., 2008). Previous studies using

cross-scale analyses frequently employ several generalized

additive or linear models with intermediate (Luoto et al.,

2007) or large resolutions (Rahbek & Graves, 2001) but are

often unclear on how the scaling precisely was done. We can

assume that many authors simply averaged or lumped data

from finer to coarser units.

It is worth noting that data averaging of aggregated cells

changes grain size, but not focus. It can be visualized as a

smoothing. Based on this interpretation, one might ask the
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Figure 4 Relative variable importance (measured as Akaike weights) as a function of scale. Land use variables are indicated by grey

lines and symbols, all the others are indicated by black ones. (a) The analysis is based on scale-specific regressions capturing only detail
components as scale-specific subcomponents. Levels range from 1 (cell size c. 4 km2) to 10 (coarsest resolution, cell size

c. 1,000,000 km2). (b) The analysis is based on scale-specific regressions capturing only smooth components as scale-specific
subcomponents. Levels range from 0 (grain size c. 1 km2, finest resolution, no wavelet transform) to 9 (grain size c. 250,000 km2).
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question, what if matrix SJ is always included in scale-specific

regressions. The matrix SJ is the smooth or low-frequency

part the MRA decomposition of matrix F (see Eq. 2). The

interpretation that can be given in this case is as follows: As

a consequence of the relationX3

m¼1
Dm

J þ SJ ¼ SJ�1; (11)

only smooth components would be under consideration. A

scaling procedure based on smooth components can be

imagined as a smoothing over gradually enlarged 2-D grid

cells. In particular, smooth MRA components of Haar wave-

lets can be seen as a series of averaging operations. The

results for scale-specific regressions for such smooth compo-

nents are given in Fig. 4b. (Note that the level shift is a con-

sequence of the index shift in Eq. 11). These results reflect

what we have to expect when the analysis is carried out for

data sampled on increasingly larger grid cells, that is, it is an

analysis quantifying the effect of increasing grain. It can

clearly be seen that if the map is split up into increasingly

larger grains, the relative importance of land use variables

decreases, whereas precipitation as the variable with the

smoothest curve is dominant across all levels and also the

relative importance of temperature and altitude remains

stable across all levels except for the highest, most uncertain

ones.

CONCLUSIONS

To the best of our knowledge, this is the first study ana-

lysing the scale dependency of an ecosystem process,

clearly distinguishing between the different components of

scale, namely extent, grain and focus, having an extremely

large sample size (n = 1,048,576), and covering a large

range of different resolutions (c. 1 km2 to c.

1,000,000 km2). In summary, our method has the advan-

tage that all calculations were done in a single framework.

Firstly, the wavelet approach is carried out by means of

multiresolution analysis, which is able to decompose grid-

ded data (maps or images) into components at different

resolutions. This data decomposition is embedded into the

framework of a multiple regression analysis (Keitt &

Urban, 2005; Carl & K€uhn, 2008). This wavelet multireso-

lution regression (WMRR) also allows response vectors of

binary or Poisson distribution. Therefore, our WMRR

approach is a method for applying 2-D wavelet analysis to

generalized linear models. Secondly, applying all regressions

in a multimodel inference approach circumvents a com-

mon problem: Using separate regressions for each scale

will result in multiple testing. Due to decreasing sample

size, hypothesis tests have declining power. Therefore,

results cannot be compared by means of hypothesis test-

ing. The multimodel inference approach does not suffer

from this problem. It calculates variable importance by

using an information-theoretic approach based on Akaike

weights (Burnham & Anderson, 2002). As results obtained

from finer to coarser scaled data can then be compared,

one is able to examine the effect of scale dependencies

and to evaluate the relative importance of several environ-

mental variables across different spatial scales. Therefore,

we provided an answer to the key question whether simi-

lar mechanisms act at different spatial scales. We applied

our method to data on climate variables and land cover

data to explain variation in vegetation greening as an

example of an ecosystem process. Our results indicated

that the relative variable importance detectable by scale-

specific regressions is strongly scale-dependent. Moreover,

for two different approaches, (1) leaving grain and extent

constant and changing focus and (2) leaving extent con-

stant and changing grain, we were able to demonstrate

how 2-D scale dependencies can be systematically analysed.

It was shown at which ‘scale’ the turning point is where

drivers change in importance.

Finally, we believe that our newly proposed method is par-

ticularly suitable for studying scale dependencies of various

spatial processes on environmental drivers having gridded

data with sufficiently large sample size. Roughly speaking,

this means that not less than five levels should be analysed

to check whether scale-dependent changes occur in variable

importance. Therefore, a quadratic matrix of at least

25 9 25 = 1024 elements is needed for each of the predictor

and response variables.
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