	Deformation Processes Mechanical Properties Material Classes		
	Deformation Proces	ses in Porou	is Media
	<u>UJ. Görke</u> ¹ W. Wang ¹	N. Watanabe ¹	O. Kolditz ^{1,2}
	¹ Helmholtz Centre for Environmental Research – UFZ, Leipzig ² Dresden University of Technology		
	Leipzig, 08 July 2011		
			HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ
1/29	THM Processes in Porous Media	✓ □ ▶ Deformation of the So	(昂) 4 ミン 4 ミン ミークへへ Jid Skeleton

	Deformation Processes Mechanical Properties Material Classes	Preliminary Remarks Kinematics of Deformation Stress Measures		
For the sake o reasonable to	For the sake of comparability of deformation processes it is reasonable to introduce relative physical variables.			
Strain measu	re in case of small	deformations		
 Displacent 	nent gradient			
$ abla ar{\mathbf{u}}(\mathbf{x},t) = rac{\partial u_i}{\partial x_j} \mathbf{e}_i \otimes \mathbf{e}_j$				
Strain tensor – symbolic representation				
$arepsilon(\mathbf{x},t)=rac{1}{2}\left(abla \mathbf{ar{u}}(\mathbf{x},t)+\left(abla \mathbf{ar{u}}(\mathbf{x},t) ight)^{\mathrm{T}} ight)$				
 Matrix of the coefficients of the strain tensor 				
$\varepsilon_{ij} = \frac{1}{2}$	$\frac{1}{2}\left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i}\right)$			
		(日) (四) (四) (川)	₹ <i>\</i> \ \ \ \ \ \ \ \ \ \	
8/29 TH	M Processes in Porous Media	Deformation of the Solid Skeleton		

External forces, acting on a material body, represent the mechanical effect of the surroundings.

Resultant force, acting on a material body

$$\mathcal{F} = \int_{\partial \mathcal{B}} \mathbf{t} \, d\mathbf{a} + \int_{\mathcal{B}} \mathbf{f} \, d\mathbf{m} = \int_{\Gamma} \mathbf{t}(\mathbf{x}, t, \mathbf{n}) \, d\Gamma + \int_{\Omega} \mathbf{f}(\mathbf{x}, t) \, \varrho(\mathbf{x}, t) \, d\Omega$$

- Surface forces with the surface force density t (traction)
- ► Volume forces with the volume force density **f**

THM Processes in Porous Media

9/29

Assumption for porous media:
 Only gravity ρg should be considered as specific volume force

注入 不注入

< (P) >

Deformation of the Solid Skele

э

The total Cauchy stress tensor in porous media is decomposed in partial stresses referring to the participating phases.

$$\boldsymbol{\sigma} = (1-n)\,\boldsymbol{\sigma}^{s} - n\left(\sum_{\gamma}S^{\gamma}\,\boldsymbol{p}^{\gamma}\right)\mathbf{I}$$

Attention:

Note the sign convention of positive fluid phase pressure p^{γ} , but negative compressive normal stress for the solid phase!

Effective solid stress

Modification of the stress representation

$$\boldsymbol{\sigma} = \boldsymbol{\sigma}_{E}^{s} - \left(\sum_{\gamma} S^{\gamma} p^{\gamma}\right) \mathbf{I} \quad \text{with} \quad \boldsymbol{\sigma}_{E}^{s} = (1 - n) \left[\boldsymbol{\sigma}^{s} + \left(\sum_{\gamma} S^{\gamma} p^{\gamma}\right) \mathbf{I}\right]$$

Effective solid stress:

Total solid stress reduced by the excess pore liquid pressure, but referred to the domain of the overall porous medium $= - + \partial_{a} + \partial_{a}$

THM Processes in Porous Media Deformation of the Solid Skeleton

11/29

Deformation Processes Mechanical Properties Material Classes

Constitutive models for solid skeleton

$$\boldsymbol{\sigma}_{E}^{s} = (1-n) \left[\boldsymbol{\sigma}^{s} + \left(\sum_{\gamma} S^{\gamma} p^{\gamma} \right) \mathbf{I} \right]$$

- Constitutive relations for the solid phase of porous media combine the solid skeleton strain with the effective solid stress
- Equilibrium condition for the porous medium

$$\varrho \mathbf{g} + \nabla \cdot \boldsymbol{\sigma}^{s}_{E} - \nabla \left(\sum_{\gamma} S^{\gamma} p^{\gamma} \right) = \mathbf{0}$$

 Constitutive relations represent idealized and simplified models according to the most dominating phenomena observed in practical applications under consideration

12/29

4 周下 4 日下 4 日下

-

200

	Deformation Processes Mechanical Properties Material Classes	Elasticity Elastoplasticity Viscoelasticity Viscoplasticity		
Theory of e	Theory of elasticity			
Generalized unia	Generalized uniaxial stress-strain curve Rheological substitute model			
		(Spring element)		
Material Class	Technical/Natural Mater	ial Geomaterial		
elasticity	metals at small strains,	igneous rocks		
	ceramics,	(e.g. granite),		
	bone,	hard sedimentary rocks		
	most other materials	(e.g. sandstone)		
	at small strains			
		・ロト・4日ト・4日ト・日 うんの		
17/29	THM Processes in Porous Media	Deformation of the Solid Skeleton		

Specific constitutive relations

Robert Hooke (1635-1703)

Isothermal isotropic linear elastic material model (Hooke's law)

anical Propert Material Class

$$\boldsymbol{\sigma} = 2\mu \boldsymbol{\varepsilon} + \lambda \operatorname{tr}(\boldsymbol{\varepsilon}) \mathbf{I}$$

Material parameters: Lamé constants μ and $\lambda,$ alternatively Young's modulus E and Poisson's ratio ν

THM Processes in Porous Media Deformation of the Solid Skeleton

Elasticity

$$E = \mu \frac{2\mu + 3\lambda}{\mu + \lambda}, \qquad \nu = \frac{\lambda}{2(\mu + \lambda)}$$

Coefficients of the consistent material matrix (numerics)

$$\mathbb{C}_{ijkl} = \frac{d\sigma_{ij}}{d\varepsilon_{kl}} = 2\mu\,\delta_{ik}\,\delta_{jl} + \lambda\,\delta_{ij}\,\delta_{kl}$$

19/29

Elasticity Elastoplasticity Viscoelasticity Viscoplasticity

Theory of (elasto)plasticity

Generalized uniaxial stress-strain curve

< @ ►

★ 国 ▶ | ★ 国 ▶

2

Rheological substitute model (Spring and frictional elements)

< Al >

4.30

-

Material Class	Technical/Natural Material	Geomaterial
elastoplasticity	metals at large strains	most soils, soft sedimentary rocks (e.g. tuff)

	Deformation Processes Mechanical Properties Material Classes	Elasticity Elastoplasticity Viscoplasticity Viscoplasticity
T I C i	1	

Theory of viscoelasticity

Generalized uniaxial stress-strain curve

Rheological substitute model (Spring and dashpot elements)

< (⊐) >

3

Material Class	Technical/Natural Material	Geomaterial
viscoelasticity	rubber, glass, soft biological tissues	rock salt (halite)

THM Processes in Porous Media Deformation of the Solid Skeletor

23/29

THM Processes in Porous Media

Deformation of the Solid Skeletor

```
25/29
```

Deformation Processes Mechanical Properties Material Classes			
Viscoelastic Kelvin-Voigt model			
 Parallel connection of the spring and the dashpot Total stress value as sum of the stresses in spring and dashpot Equal strain in both individual elements 	Lord Kelvin		
 Constitutive model (differential equation) 			
$\sigma = k \varepsilon + \eta \dot{\varepsilon}$	σ		
 Response to an instantaneous stress jump σ₀: Strain increases asymptotically to elastic state 			
$arepsilon = rac{\sigma_0}{k} \left[1 - \mathrm{e}^{-kt/\eta} ight]$			
⇒ Typical strain retardation (viscoelastic creep) neglecting any instantaneous strain			
26/29 THM Processes in Porous Media Deformation of the Solid Skeleton			

	Deformation Processes Mechanical Properties Material Classes	Elasticity Elastoplasticity Viscoelasticity Viscoplasticity
Theory of v	viscoplasticity	
Equilibrium Cu		
Generalized unia	axial stress-strain curve	Rheological substitute model (Spring, dashpot, and
		frictional elements)
Material Class	Technical/Natural Mate	rial Geomaterial
viscoplasticity	polymers (plastics),	clay soils,
	wood,	clay stone
	bitumen, metals at high temperat	lire
		uic
27/29	THM Processes in Porous Media	Deformation of the Solid Skeleton

 Design of lab tests for fundamental characterization of material behavior, and calibration of constitutive models

29/29	THM Processes in Porous Media	Deformation of the Solid Skeleton