

- **Vergangene Vorlesung: Theis**
- Linux/Ubuntu: unterschiedliche Kommados f
 ür Zeilenende im Vergleich zu Windows
- Windows Zeilenende verwendet: "CR + LF" (= Carriage Return + Line-Feed), Linux verwendet nur "LF" (=Line-Feed)
 - → entweder im Editor Konvertierung durchführen
 - → oder Konvertierung mittels Tool: z.B. fromdos pds.*
 - \rightarrow oder: dos2unix pds.*
- Visual Studio: Problem gelöst?

heute: Ammer Einzugsgebiet

- Einführung in wiss. Fragestellung
- Datenaufbereitung: ArcGIS
- Erstellen der OGS-Eingabedateien
- → Modelldurchlauf

Selle et al., 2013

Arbeitsplan der hydrologischen Modellierung

- Problemanalyse
- Datenerhebung
- Konzeptionelles Modell
- Modellaufbau/-prüfung
- Modellanwendung
- Modellpflege

Ammer-Einzugsgebiet

Problemanalyse: Einzugsgebiet der Ammer

 Grundwassermodellierung in Baden-Württemberg – Hauptkomponentenanalyse von Wasserqualitäts-Parameter auf Einzugsgebietsebene (B. Selle)

Recharge and discharge controls on groundwater travel times and flow paths to production wells for the Ammer catchment in southwestern Germany

Selle et al., 2013

WESS-Projekt

WESS workflow from the soil-plant-atmosphere to the groundwater-surface water interface including integrated modeling and future climate and land use scenarios (Grathwohl et al., 2012)

Ammer-Einzugsgebiet

	Ammer	0. A C
Catchment size [km ²]	134	
min. elev. [m asl]	345	
max. elev. [m asl]	600	alt, a
land use		Sale of the
city	17%	and the second sec
agriculture with	71%	
- arable land	66%	
- meadow	5%	A 194
forest	12%	
population density [people *km ⁻²]	540	The,
geology	karstic limestone (mo) and gypsum	制度 化面积
	(km2)	
soils	clayey soils, partial covered by loess	-
Mean air temperatur [°C]	~8	an an an an an
Annual precipitation[mm*a ⁻¹]	760	analo set
Mean discharge height[mm*a ⁻¹]	226	angle earli

Page 7

Ammer-Einzugsgebiet

Geologie

3-D Ansicht des Ammer-Einzugsgebietes mit den Flüssen Ammer,Kochart und Käsbach

- Gipskeuper-Quellen (Quadrat) und
 Obere Muschelkalk-Quellen(Trapez)
- Trinkwasserquellen (Kreise W1, 2, 3, 4).
 Hydrogeologische Einheiten:
- Oberer Muschelkalk (.....)
- Gipskeuper (.....)
- Lettenkeuper (.....)
- Schilfsandstein (.....)
- Bunte Mergel (.....)
- Stubensandstein (.....)

kleine Karte: Observationsbrunnen zur Kalibrierung

Quelle: B.Selle

Basisabfluss

Herkunft des Grundwasserausflusses am Gebietsauslass

Grundwasser und Grundwasserneubildung

- Grundwasserströmung wird durchforciert
- Schönbuch (Waldgebiet):
 - überwiegend Schilfsandstein, Bunte Mergel und Stubbensandstein
 - geringe Neubildung
 - untergeordnete Rolle bei Grundwasserströmung
- weiterer Anteil: geklärtes Abwasser aus ehemals 4 Grundwasserbrunnenfeldern (Trinkwasser) mit mittlerer Pumprate von 150l/s
- Grundwasserneubildung entlang

Modellparameter: Geometrie und hydraul. Eigenschaften

- Grundwasserströmungsmodell mit OGS:
- Strukturmodell beinhaltet Aquifer-Modell (3D mesh):
 - DEM (minus)
 - Einzugsgebietsgrenze: Ammer
 - unterirdische Layer (Raster) repräsentieren die 4

.....: mo, ku, km1, km2, km3, km4

- Flußnetzwerk: Ammer + 2 Nebenflüsse: Käsbach + Kochart
- 4 Pumpfelder (Grundwasser)
- → Mesh wird entlang wichtiger geolog./hydrolog. Punkte
- hydraulische Leitfähigkeit in Abhängigkeit der Stratigraphie

Modellparameter: Randbedingungen

- Einzugsgebietesgrenze: no flow
- Unterkante des mo-Aquifer enthält Evaporite des Mittleren Muschelkalks
 → no flow boundary
- Entnahmebrunnen: mittlere Pumprate 35 l/s

I CENTRE FOR

ENVIRONMENTAL

RESEARCH - UFI

CHNISCHE

UNIVERSIT

DRESDEN

Grundwasserströmungsmodell: Neubildungs- und Abflussszenarien

- Langzeit-GW-Neubildung (1961-1990) wurde aus 2 Atlanten digitalisiert: WaBoA + HAD
 - räumliche Auflösung:
 - basiert auf Regionalisierung des Basisabfluss Indexes (verwendet multiple lineare Regression anhand von dominierenden Einzugsgebietscharkteristika wie)
 - WaBoA: 185 mm jährliche GWN
 - HAD: 105 mm jährliche GWN
- verschiedene Abflussszenarien:

HELMHOLTZ

ENVIRONMENTAL RESEARCH - UFZ

TECHNISCHE

UNIVERSITA DRESDEN

Grundwasserströmungsmodell-Modellkalibrierung

- PEST code (Doherty 2004): Abschätzung der hydraulischen Leitfähigkeit inkl. Genauigkeit der Schätzung
- direkt an OGS gekoppelt
- Schätz-Bereiche orientieren sich an
- die Summe der quadrierten Differenzen zwischen den beobachteten und simulierten Wasserständen an 27 Brunnen diente als Zielfunktion für Modellkalibrierung
 - mo: 15 Beobachtungsbrunnen
 - ku: 5
 - km1: 6
 - km2...4: 1

Visualisierung der Modellergebnisse des Ammer-Modells

The Ammer catchment: Geometrical representation (left) Groundwater flow model (including flowpaths to groundwater abstraction wells; right). Data visualization by Bilke (2012)

Visualisierung im VISLAb Leipzig

Let's start to develop step by step the groundwater flow model!

OpenGeoSys Data Explorer Editor (z. B. Notepad++) Gmsh ParaView

Modellaufbau

- numerisches Modell basiert auf den Ideen zum konzeptionellen Modell
 - von Pavlovskiy und Selle (2014)
- beinhaltet die bestmögliche Charakterisierung der GWN + Aquifer-

Abflusses

für Modellaufbau wird OpenGeoSys Data Explorer verwendet

Workflow für den Modellaufbau

	ArcGIS output: *.shp, *.asc	Data base: Geographic data related to topography, DEM, river network, borehole position are prepared in an <i>AreGIS</i> project (Sec. 5.4)
E.	OGS DE output: •.gli, •.gnl	Data integration: Data from AreGIS can be directly imported to OGS and visualised by using the OGS Data Explorer (Sec. 5.5)
2.3	GMSH / OGS DE output: *.nnh, *.nnp	Domain meshing: For numerical analysis the model domain needs to be discretised into a finite element meshing tools (<i>GMSH</i> , <i>TetCen</i>) are available via the <i>Data Explorer</i> . Amigament of material groups is also integrated into the meshing procedure (Sec. 5.6)
	OGS DE output: *.bc, *.st, *.ic	Initial and boundary conditions as well as source/sink terms for com- puting groundwater flow. (Sec. 5.7)
Bandrah Sand Pagi Lang Li Bangga Li Bang Pagi Lang Li Bangga Li Bang Pagi Lang Li Bang Pagi Li Bang Li Bang Pagi Li Bang Li Bang Bang Li Bang Li Bang Bang Li Bang Li Bang Li Bang Li Bang Li Bang Bang Li Bang Li Bang Li Bang Li Bang Li Bang Li Bang Bang Li Bang L	OGS output: *.pcs, *.num, *.tim, *.out	Simulation: Finally, the groundwa- ter model is ready for simulation. Additional OGS files have to be completed for model runs (Sec. 5.9)
A LANG	OGS DE output: •.vtk, •.tec	Visualisation: The OGS Data Ex- plorer provides a large variety of tools for combined analysis of data and simulation results including 3D visualisation (Sec. 5.11)

HELMHOLTZ CENTRE FOR ENVIRONMENTAL RESEARCH - UFZ

Eingabe-Dateien

File	Description
boundary_polygon.shp	Catchment boundary
Ammer_River_Polyline.shp	Ammer River
Kaesbach_River_Polyline.shp	Kaesbach River
Kochart_River_Polyline.shp	Kochart River
wells.shp	pumping well sites
observation wells.shp	observation wells
springs-Upper-Muschelkalk.shp	springs of Upper Muschelkalk aquifer
springs-Gipskeuper.shp	springs of Gipskeuper aquifer
1_km2_4_up.asc 2_km1_up.asc 3_ku_up.asc 4_mo_up.asc 5_mo_down.asc	Raster data of the upper boundary of Schilfsand- stein/Bunte Mergel/Stubensandstein Raster data the upper boundary of of Gipskeuper Raster data the upper boundary of Lettenkeuper Raster of upper boundary of Upper Muschelkalk Raster of lower boundary of Upper Muschelkalk
AmmerDEM.asc	Digital Elevation Model
AmmerGWR.asc	Raster data of groundwater recharge

+ Import von boreholes.txt (Stationsinformation)

Download : <u>http://tutorials.opengeosys.org</u>

Eingangsdaten-ArcGIS

OpenGeoSys: Datenimport

Öffnen des OpenGeoSys Data Explorers

Erfolgreicher Datenimport

Erfolgreicher Datenimport

Page 28

eventure -	A v	an 2+ 9+ 2+		(and) Menufication Bro	ine	4
d Boundary_polygon > Points > PolySnes	· · ·			Veible Obje	d name ndary_polygon - Points ndary_polygon - Polytin ndary_polygon - Surface ner_River_polytine - Point	
 Surfaces Ammor River polyline Kaesbach River polyline Kochart River polyline springs. Upper Music springs. Gipskeuper observation_wells 		and and		Actor Properti Diffuse Color Color by	cs (150, 190, C-SurfeceIDs	100) • C
wells			2mg	Cpacty Scaing T	s (0, 0, 0	1)
			100	X Filter Property	0 Y 0 Z	0
		🦾 Proj	ekt absp	eichern!		

Daten hervorheben

Geometry	Parent	10 0	Visualization Pipeline	8
Id x) Boundery_polygon Ammer_River_polyline Acaebach_River_polyline Kacabach_River_polyline Kacabach_River_polyline Kacabach_River_polyline Springs_Upper_Musc springs_Upper_Musc springs_Upper_Musc springs_Upper_Musc observation_wells observation_wells	Output: Add file Points to spheres Lines to tubes Apply totate to surface Extract cells by theihold Devation-based colouring This fiber will convert lines to tubes that can be colored by solid olds. This fiber will convert lines to tubes that can be colored. This fiber will convert lines to tubes that can be colored. Pitter data name: VitiCompositeLineToTubeFiber		Visible Object name Ø Boundary_polygon - Points Ø Boundary Ø Add filter Ø Ammer Add color table Ammer Ø Ammer Actor Properties Export as VTK Diffuse Color (100, 50, 50) Color by C PolylineIDs Vable Edges (0, 0, 0) Opacity Scaling Scaling Translation X 0 Y Filter Properties Filter Properties	
J III Geonetry Meshes Modeling	OK Canot			0

Daten hervorheben

Filter:

- "Lines to tubes" \rightarrow Linienelemente
- "Points to sphere" \rightarrow Punktelemente

Fig. 34: Visualisation of geometry data in the OpenGeosys Data Explorer.

Zuordnen von Attributen, z.B. Name

ometry .				#×	(TT) 2+	OFT	Visualization Pipeline 8
							Visible Object name
d Boundary_polygon Ammer_River_polyline Kaesbach_River_polyline Kochaet_River_polyline	x.	У	z	name A			Boundary_polygon - Points Boundary_polygon - Polylines Boundary_polygon - Surfaces Ammer_River_polyline - Points Ammer_River_polyline - Points
 springs_Upper_Muschelk. Points 	-				5		Actor Properties
0	34893	53820	407.664600		5		Diffuse Color (0, 200, 200)
1	34897	53830	397.908100	1.0	50		
2	34898	\$3829	396,265400		154		Color by C-PolyineIDs •
3	34945	53781	374,406900	_	X		
4	34947	53779	373.073100		0		The second se
5	34904	53820	388,905600	_		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Visible Edges (0, 0, 0)
springs Gipskeuper						2	
# Points				-	-	and and	Opeoty
0	34935	53804	387.284400				
1	34940	53805	391,784400	_		12	Scaing Translation
2	34973	53804	385.842700	111		and for	
3	34925	53799	384.855100	_		1 miles	X 0 Y 0 Z 0
4	34937	53828	428.342300			~	Contraction of the second s
observation wells						2038	Filter Properties
# Points				111			A CONTRACTOR OF
0	34912	53899	494.121700	100	17		
	24035	*****	200.00000		132		
province of a second	m						
eometry Meshes Mod	eling 5	tations					

Zuordnen von Attributen, z.B. Name

Zur eindeutigen Unterscheidung:

- Punkte mit Namen benennen
- Punkt auswählen
- Rechtsklick auf Punkt: "Set name"
- 23 Punktnamen zuweisen
- → Projekt abspeichern: "File" →
 "Save data as OpenGeoSys project (*.gsp)
- → diese Geometrie-Elemente sind Voraussetzung f
 ür FE Mesh-Generierung

File	Point	Name
wells	0	wellsite1_top
wells	1	wellsite1_bottom
wells	2	wellsite2_top
wells	3	wellsite2_bottom
wells	4	wellsite3_top
wells	5	wellsite3_bottom
wells	6	wellsite4_top
wells	7	$wellsite4_bottom$
springs_Upper_Muschelkalk	0	mo_0
springs_Upper_Muschelkalk	1	mo_1
springs_Upper_Muschelkalk	2	mo_2
springs_Upper_Muschelkalk	3	mo_3
springs_Upper_Muschelkalk	4	mo_4
$springs_Upper_Muschelkalk$	5	mo_5
springs_Gipskeuper	0	km1_0
springs_Gipskeuper	1	km1_1
springs_Gipskeuper	2	km1_2
springs_Gipskeuper	3	km1_3
springs_Gipskeuper	4	km1_4
observation_wells	0	obs_well1
observation_wells	1	obs_well2
observation_wells		
observation_wells	35	obs_well36

Finite Element Meshing

- benötigt Geometriedaten (Koordinaten + Parameter) aus OGS DE
- Mesherstellung sollte mit größter Sorgfalt betrieben werden
 - Mesh sollte das Modellgebiet gut repräsentieren
 - ausreichend hohe Meshdichte
 - Eigenschaften (Porosität, Permeabilität) sind mit Meshelementen verknüpft

HELMHOLTZ

ENVIRONMENTAL

RESEARCH - UFI

TECHNISCHE

UNIVERSITA

DRESDEN

• Anzahl der Elemente hinreichend klein: Simulationszeit

2D Mesh des Ammer-Einzugsgebietes basiert auf:

- Wasserscheide der Einzugsgebietes
- Flußnetzwek
- Quellen
- Beobachtungsbrunnen
- Grundwasser-Entnahmebrunnen

Verfeinerung des Meshs

Oberflächen-Mesh: Step by Step

sicherstellen, dass der Mesh Generator GMSH implementiert ist

("Setting" → "Data Explorer Settings" → "Path"

Oberflächen-Mesh:

"Tools" → "Mesh Generation"

Oberflächen-Mesh: Step by Step

Next Westween Settings Prop Next Analyze Mech. Remove Mech Demants Med Marge Geometries Diagram Viewen HEM Text	Selection of geometry incorporated into mesh Autide internation Reading internation Reading advantages Reading advantages Readvantages Readvantages Readvantages Readvantages Readvantag
Rement Properties: (Par selected element) Name Type Name trag, proh eliodes: 11943 • elicensets: 3467 Liver: 762 Titangles: 2105	Lang Advanced meshing options
Bounding Box Max: 3400001 3373x Max: 3400001 3373x Max: 3407013 330201 Idge Length: [1.171332, 254.01.* Zeone	Adaptive reading Adaptive reading spatters Maximum reading spatters Maximum registers Mean already scaling for parts Mean already scaling for parts Mean already scaling for plasters Mean already scaling for plasters Mean already scaling for plasters
abspeichern als "ammer_2Dmesh.msh"	Pronogeneous nearing Homogeneous nearing system Dement Size Zocks (245)r peo file wher generating nearl

3D Mesh-Generierung

- 2D Mesh wird extrudiert (erweitert), d.h. die gewünschten Anzahl von Schichten wird unter Verwendung von Hexaeder oder Prismenelemente hinzugefügt
- Schichtgrenzen werden auf Basis von Rasterdaten zugeordnet

3D Mesh: Volume Meshing- Step by step

			Creation and mapping of mes	th layers		
ishes	6	×	Please specify the number of layers to add: 4	Next	O Visualization Pipeline	e ×
		G	(select "0" for surface mapping)		Visible Object name	*
Aesh Name	Туре		>	E Ed mesh laye	rs Benedicionalita	10 8
tmp_gmsh						and the second se
SubsurfaceM	Edit mesh			Count		
	Edit material grou	ips		Creation	on and mapping of mesh	layers
	Calculate elemen	t qualit			and an affer and the state of the	1 mart 1
	Convert to geom	etry	OK.	Canot	cupe or alies or add. [4	
	Export to Shapefil			C: Add layers b	ossed on raster files	
				C Addingers v	with static Techness	
	DIRECT Condition	ns	·			
				Name or article	rather file for marries each larger	
ement Properties:	(for selected elements	0		SSIG .	table in in instants substants	
lame	Type -		Constant Providence	Surface	VodelAmmer/input_files/AmmerDEM_asc	
Name:	SubsurfaceMest		the second second	Layer2-Top	/ModelAnmer/input_files/2_km1_up.asc	
#Nodes:	38527			Laver3-Top	wModelAnmerleput Res/3 ku up asc	and the second second
#Elements:	54641 E					
Posamida:	2274			Layer4-Top	k/ModelAmmer/input_files/4_mo_up.asc	- A++ 7 (
Prisms	50074			Layer4-Bottom	TodelAmmer/input_files/5_mo_down_asc	1000
Bounding Box						
Min:	3480960.351130		17	Select output ek	ement type	
Max	3497915.778270 -		-32	Ø Prisms	Tetrahedra	
No. of Concession, Name					~	Contral
and the second se	Mary Me Share				- CR	Cancer

Volume Meshing: Step by step

- Schichten oberhalb der Oberfläche werden automatisch gelöscht → austreichende Schichten
- SubsurfaceMesh als "Subsurface.vtu" (und als "ammer_3Dmesh") abspeichern!
- 3D mesh in "Visualisation Pipeline" mittels "Scaling Factor" von 5 überhöhen

Zuweisen von randbedingungen

Randbedingungs-Typen:

- 1. Specific head boundaries (Dirichlet Randbedingung): Wasserstand liegt vor
- Specified flow boundaries (*Neumann Randbedingung*): Flußrandbedingung
 (Volumen) → no-flow: flux=0
- 3. Head-dependent flow boundaries (*Cauchy Randbedingung*): Fluß über Rand in Abhängigkeit eines festgelegten Wasserstandes

Table 10: Boundary condition files for the Ammer case study.

File	Description
ammer.ic	Initial conditions
ammer.bc	Boundary conditions
ammer.st	Source terms

→ Randbedingungen werden auf Geometrie-Objekte angewendet und während der Simulation über Mesh-Knoten interpoliert

Initiale Randbedingungen

• initiale Randbedingungen (z. B. Prozesstyp: Groundwater Flow) beschreiben den initialen Wasserstand im gesamten Untersuchungsgebiet

Ammer- Einzugsgebiet:

• IC: hydraulic head: 400 m

ade 41

Quellterm

- Grundwasserneubildung (Rasterdaten: WaBoA) und
- Grundwasserentnahme (Pumpraten) an Brunnen

Quellterm: Grundwasserneubildung

				Conce and sector of the sector		
leshes	a x	1	Process Type	GROUNDWATER_PLOW		Instan Daulan
🗎 Η 💌		Alle	Condition Type	Source Term	Creste Boundary Con	ditions from Raster Files
Mesh Name I tmp_gmsh	Туре		Primary Variable	HEAD	Mesh SubsurfaceMe	- de
Subsurfac ****	Edit mesh Edit material groups Calculate element quality Extract surface Export to TetGen	-	Distribution Type	Direct Calculate Values OK Cancel	Raster orial/ModelAm Calculation method Use raster values de Integrate over mest Scaling 3153600000	ectly ectly elements 0. Diote: Normalization is 1 / Scaling)
	DIRECT Conditions	•	Add			OK Cancel
Element Properties	: (for selected elements)	1	TELEVISION OF			5
Name	Type			FEM Condition	Setup	
743mme	Subsurfacemesh					
#Nodes: # #Elements Totabadas	38610 54731 II			Process type	CALCONDATACE (LOW +	Translation
#Nodes: # #Elements: Tetrahedra: Pyramida:	38610 54721 II 2281 2288			Condition Type	Source Term	0 Y 0 Z
#Nodes: # #Elements Tetrahedra: Pyramida: Prisma:	38610 54721 # 2281 2288 50162			Condition Type	Source Term	0 Y 0 Z
#Nodes: #Elements Tetrahedra: Pyramids: Prisms: Bounding Box Mire: Mare	38610 54731 II 2281 2288 50162 3480960.351130 5 3480960.351130 5		ť.,	Condition Type Primary Variable	Source Term *	0 Y 0 Z
#Nodes: #Elements Tetrahedra: Pyramids: Prisms: Bounding Box Min: Max # TH	38610 54771 = 2281 2288 50162 3480960.351130 = 3497915.778270 =		$l_{x \rightarrow x}^{\gamma}$	Condition Type Primary Variable Distribution Type	Source Term	0 Y 0 Z Yoperties
#Nodes: #Elements Tetrahedra: Prisma: Bounding Box Min: Max Max Ceome Mes	36610 54771 # 2281 2288 50162 3480960.351130 \$ 3497915.778270 \$ -	gebn	ĺ ^γ ∡-∡ is: txt-Dat	Condition Type Primary Variable Distribution Type ei mit Grund	Source Term • FEAD • Direct • Wasserneubildun	g-Raten

Quellterm: Entnahmebrunnen

Page 45

Table 1	1:	Pumping	rates	of	well	sites
---------	----	---------	-------	----	------	-------

Well Points (Geometry)	Point name	pumping rate
0	wellsite1_top	$-0.017m^3/s$
1	wellsite1_bottom	$-0.017m^{3}/s$
2	wellsite2_top	$-0.017m^{3}/s$
3	wellsite2_bottom	$-0.017m^3/s$
4	wellsite3_top	$-0.017m^{3}/s$
5	wellsite3_bottom	$-0.017m^3/s$
6	wellsite4_top	$-0.017m^{3}/s$
7	wellsite4_bottom	$-0.017m^{3}/s$

Quellterm: Entnahmebrunnen - Neumann Randbedingung -

Randbedingung: Wasserstand der Quellen - Dirichlet Randbedingung -

Page 47

Spring	Point Name	HEAD
Upper Muschelkalk	mo_0	$407.6646 \mathrm{m}$
Upper Muschelkalk	mo_1	$397.9081{ m m}$
Upper Muschelkalk	mo_2	$396.2654 \mathrm{m}$
Upper Muschelkalk	mo_3	374.4069 m
Upper Muschelkalk	mo_4	373.0731 m
Upper Muschelkalk	mo_5	$388.9056\mathrm{m}$
Gipskeuper	km1_0	387.2844 m
Gipskeuper	$km1_1$	$391.7844{ m m}$
Gipskeuper	$km1_2$	$386.8427\mathrm{m}$
Gipskeuper	km1_3	$384.8551{ m m}$
Gipskeuper	$km1_4$	$428.3423 \mathrm{m}$

Randbedingung: Wasserstand der Quellen - Dirichlet Randbedingung -

Visualisierung der Randbedingungen

Page 49

Randbedingungen – Daten abspeichern

odeling	8 × 🌐	2+ 9+ 2+		Visualization	Pipelne		ð
Vame GROUNDWATER FLOW A Sul Remon DOMAIN Brundary Condition A mo.0 HEAD CONSTANT I mo_1 mo_2 I mo_4	Value Value EM Conditions Ve process 400 as OINT 407/65 POINT POINT POINT POINT POINT POINT POINT	Geonetry Condition Type Filename	ditions Seve conditions on all geometries (All Types of Conditions D:/OGSTutorial/ModelAmmer/ammer.ord) OK	Cancel	ject name sundary_po sundary_po sundary_po mmer_River rites	lygon - Points lygon - Polylines polyline - Points (255, 255, 25 P-Normals (0, 0, 0)	, s
<pre>> mo_3 > kml_0 > kml_1 > kml_1 > kml_2 > kml_3 > kml_4 * Source Terms wellsite1_top HEAD #EAD #EAD #EAD #EAD #EAD #EAD #EAD #</pre>	POINT POINT POINT POINT POINT POINT AL AAT2 * Remove All del State	1 ⁴ z-z		Opacity Scaling X Piter Prop	Translation 0 Y erties	0 2	

Vorbereitung für Simulation der Grundwasserströmungsmodells

- alle Eingabe-dateien für das Grundwasserströmungsmodel sind vorbereitet
- Geometrien müssen in einer Datei zusammengefügt werden (merge)
- für die Simulation mit OGS 5: Eingabe-Dateien müssen aus OGS6-format

HELMHOLTZ

ENVIRONMENTAL

RESEARCH - UFZ

TECHNISCHE

UNIVERSITÄT

DRESDEN

konvertiert werden

Page 51

Zusammenfügen der Geometrie

Datei-Konvertierung (File Converter)

- Eingabe-Dateien wurden mittels OGS DE (OGS 6) erstellt
- Simulation: OGS 5.exe
- → deshalb müssen Eingabe-Dateien in OGS 5 Format umkonvertiert werden

Beachte: OGS5-Dateien sind immer ASCII-Dateien während OGS6-Dateien XML-

Dateien sind!

- Verwende "XML Geometry to ASCII" um gml-Dateien zu *.gli-Dateien zu konvertieren
- Verwende "XML meshes to ASCII" für vtu-Dateien zu *.msh-Dateien
- Verwende Table 13: File conversion overview. ≯ien

OGS-6 File name	convert to $OGS\mathchar`-$ 5 file	data file
ammer.gml	ammer.gli	geometry file
ammer.cnd	*.bc, *.ic, *.st	boundary condition, initial condition, source term
SubsurfaceMesh.vtu	SubsurfaceMesh.msh	mesh file

Page 53

Datei-Konvertierung

DpenGeoSys Data Explorer - 6.0.0 Beta (L	3/TF/KR) - FirstFloor		0.0
File Tools Windows Settings Help	005 Ele Converter		
Geome Mesh Generation Analyze Mesh	Geometry	Fielist	9 💌 6 X
Remove Mesh Elements	XML Geometry to ASCII	Add source files to convert: D://OGSTutorial/ModellAmmer/ammer.gml	+ ER_FLOW - Source Terr
B File Converter	ASCII Geometry to XML		ints 1
K FEM Test	Meshes		ices •
observation wells	XML meshes to ASCII		
 springs_Giptkeuper springs_Upper_Musc 	ASCII meshes to XML		Q00, 50, 150)
wells SubsurfaceMesh	Conditions	Save to: D:\DGSTutorial\ModelAmmer	C
 SubsurfaceMesh-2 ammer 	XML conditions to ASCII	Save	Cancel
 Points Polylines 	ASCII conditions to XML	OpenGeoSys	
> Line 0	Christ	The survey of the bard	
▷ Line1	Cone	File conversion finished	1
Line 2			Translation
Surfaces			0 Y 0 Z 0
In Surface 0.		Filter	Properties
	1.7		ć.
	4+2		-
Geome Mes. Model Stat.			
Page 54			

Konvertierung von ammer.gml zu ammer.gli

```
#POINTS
                     0 3484965.87555 5391892.5068499995 593.159999999999997
                    1 3485588.0931199999 5391873.0619700002 560.7899999999999
2 3486365.8666300001 5391853.6201999998 559.4199999999999
3 3487085.3054999998 5391795.2855500001 509.88999999999999
                     [..]
                    614 3497340 5378030 315 $NAME wellsite3_bottom
615 3496850 5377085 335 $NAME wellsite4_top
616 3496850 5377085 300 $NAME wellsite4_bottom
                     #POLYLINE
                      $NAME
                       $POINTS
                        Ó
                        1
                        [..]
                        561
                        562
                        400
                     #SURFACE
                       $NAME
                        0
                       $TYPE
                        0
                       $POLYLINES
                     #STOP
                                                                                                                                                         G
                                                                                                                                                              HELMHOLTZ
                                                                                                                                                                CENTRE FOR
                                                                                                                                    TECHNISCHE
                                                                                                                                                                ENVIRONMENTAL
                                                                                                                           fur
                                                                                                                                   UNIVERSITÄT
                                                                                                                                                                RESEARCH - UFZ
                                                                                                                                    DRESDEN
Page 55
```

Konvertierung von ammer.cnd zu ammer.bc ammer.ic ammer.st

#BOUNDARY_CONDITION \$PCS_TYPE GROUNDWATER_FLOW \$PRIMARY_VARIABLE HEAD \$GE0_TYPE \$GEU_ITPE POINT mo_O \$DIS_TYPE CONSTANT 4.076650000000++002 *BOUNDARY_CONDITION \$PCS_TYPE GROUNDWATER_FLOW \$PRIMARY_VARIABLE HEAD \$GE0_TYPE POINT mo_1 \$DIS_TYPE CONSTANT 3.979080000000e+002 [..] #BOUNDARY_CONDITION \$PCS_TYPE GROUNDWATER_FLOW \$PRIMARY_VARIABLE

CONSTANT 4.283420000000e+002

```
#SOURCE_TERM
 $PCS_TYPE
  GROUNDWATER_FLOW
 $PRIMARY_VARIABLE
  HEAD
 $DIS_TYPE
  DIRECT D:\OGSTutorial\ModellAnmer/direct
#SOURCE_TERM
$PCS_TYPE
  GROUNDWATER_FLOW
 $PRIMARY_VARIABLE
  HEAD
 $GEO_TYPE
  POINT wellsite1_top
 $DIS_TYPE
  CONSTANT_NEUMANN -1.700000000000e-002
  [..]
#SOURCE_TERM
 $PCS_TYPE
  GROUNDWATER_FLOW
 $PRIMARY_VARIABLE
 HEAD
 $GE0_TYPE
  POINT wellsite4_bottom
 $DIS_TYPE
  CONSTANT_NEUMANN -1.70000000000e-002
#STOP
```

#STOP

HEAD

\$GE0_TYPE

POINT km1_4 \$DIS_TYPE

Konvertierung von SubsurfaceMesh.gml zu ammer.msh

<pre>#FEM_MSH \$PCS_TYPE N0_PCS \$NODES 38610 0 3494493.58165 5386875.87966999 512.634247246 1 3494785.24555 5386506.43623 535.5634554289 2 3494649.1376 5386700.87882999 543.3677486263 </pre>	3868
	Mesh Material_group geological layer
<pre>\$ELEMENTS 54731 0 3 pris 1231 1087 1089 48 1 3 1 3 pris 1231 1230 1087 48 47 1 2 3 pris 1088 1230 1231 2 47 48</pre>	0 Upper Muschelkalk 1 Lettenkeuper 2 Gipskeuper 3 Schilfsandstein, Stubensandstein, Bunte Merreel
[]	Buile Merger
2243 2 pris 5907 5906 5768 1177 1176 1132 2244 2 pris 5907 5767 5906 1177 1131 1176 2245 2 pris 5910 5911 5912 1180 1181 1182 []	
12089 1 pris 15199 14897 15198 5907 5767 5906 12090 1 pris 15260 15194 15195 5968 5902 5903 12091 1 pris 15274 15275 15273 5970 5971 5969 Page 57	

Datei-Bearbeitung

einige Eingabe-Dateien müssen mittels Editor angepaßt werden (siehe vergangene Vorlesung: Theis)

Object	File	Explanation
PCS	ammer.pcs	process definition: groundwater flow
NUM TIM	ammer.num ammer.tim	numerical properties time discretisation
MMP	ammer.mmp	medium properties of geological layers
OUT	ammer.out	output configuration

Datei-Bearbeitung: PCS – Prozesstype

GROUNDWATER FLOW:

- Darcy's Gleichung
- gespannter Aquifer

Parameter	Symbol	Unit
Discharge	Q	m ³ /s
Hydraulic conductivity	K	m/s
Specific Storage	S_s	1/m
Density of water (10 °C)	ρ	$kg \cdot m^{-3}$
Viscosity of water (10 °C)	μ	$Pa \cdot s$

#PROCESS				
\$PCS_TYPE				
GROUNDWATER_FLOW	;	for	equation	()
#STOP			-	

Verwende z. B. Notepad++!

Datei-Bearbeitung: NUM – Numerik

Die NUM-Datei parameterisiert die Numerik des linearen Lösers der Darcy-Gleichung.

```
#NUMERICS
$PCS_TYPE
GROUNDWATER_FLOW
$LINEAR_SOLVER
; method .... error\_tolerance max\_iterations theta precond storage
2 0 1.00000000000e-10 2000 1.0 100 4
#STOP
```


Datei-Bearbeitung: TIM – Zeitschritt

Die zeitliche Auflösung und Anzahl der Zeitschritte für das Grundwasserströmungsmodell wird durch die TIM-datei bereit gestellt.

Ammer Einzugsgebiet: steady state conditions

#TIME_STEPPING
\$PCS_TYPE
GROUNDWATER_FLOW
\$TIME_START
0
\$TIME_STEPS
1 1
\$TIME_END
100
#STOP

Datei-Bearbeitung: MMP – Materialeigenschaften

Materialeigenschaften des porösen Mediums:

- bei Prozesstyp "GROUNDWATER FLOW": hydraulische Leitfähigkeit
- hydraulische Leitfähigkeit aller geologischen

Schichten: bottom-up-Prinzip

Mesh iaLGrou	Mater- Geological Layer ıp	Hydraulic Conductivity
0	mo – Upper Muschelkalk	4.4394111E - 05 m/s
1	ku – Lettenkeuper	1.0000000E - 04 m/s
2	km1 – Gipskeuper	1.5000454E - 05 m/s
3	km2, km3, km4 – Schilfsandstein, Bunte Mergel, Stubensandstein	3.9741665E - 09m/s

#MEDIUM_PROPERTIES
\$NAME
no
\$GEOMETRY_DIMENSION
3
\$GEOMETRY_AREA
1.0000000000000000000000000000000000000
\$POROSITY
4 U.1 ADEDWEADTITEV TENOND
ISOTROPIC 4.4394111E-05
#NEDTIM DRODERTIES
\$NAME
ku
\$GEOMETRY_DIMENSION
3
\$GEOMETRY_AREA
1.00000000000000000
\$POROSITY
1 0.1
\$PERMEABILITY_TENSOR
ISOTROPIC 1.000000E-04
MEDIUM_PROPERTIES
enanc.
SCEOMETRY DIMENSION
3
\$GEOMETRY_AREA
1.00000000000000000
\$POROSITY
1 0.1
<pre>\$PERMEABILITY_TENSOR</pre>
ISOTROPIC 1.5000454E-05
#MEDIUM_PROPERTIES
\$NAME
kn2
\$GEOMETRY_DIMENSION
3
\$GEOMETRY_AREA
1.00000000000e+000
SPORUSITY 0.1
ADDEDWEIGTITTY TENCOD
TROTROPIC 3 07416655-00
TODIMOLIO 2.3141000F=03
#STOP
STOP

Simulation

Table 18: Input files for groundwater simulation.

Object	File	Explanation
GEO MSH	ammer.gli ammer.msh	system geometry of Ammer catchment 3D finite element mesh
PCS	ammer.pcs	process definition: groundwater flow
NUM TIM	ammer.num ammer.tim	numerical properties time discretisation
IC BC	ammer.ic ammer.bc	initial conditions boundary conditions, e.g. groundwater recharge
ST	ammer.st	source/sink terms
MMP	ammer.mmp	medium properties of geological layers
OUT	ammer.out	output configuration
GWR	direct_values0.txt	groundwater recharge

Wichtig: Alle Dateien im gleichen Ordner! Füge diesem Ordner die ogs.exe hinzu!

Start der Simulation

Offne ogs.exe,

schreibe "ammer",

klick auf ENTER,

Simulation startet!

→ die Simulationsschritte können im Konsolenfenster nachvollzogen werden

Simulationsergebnisse

- ammer_GROUNDWATER_FLOW0000.vtk
- ammer_GROUNDWATER_FLOW0001.vtk
- ammer_time_obs_well1_GROUNDWATER_FLOW.tec
- ammer.txt (nur wenn OGS Simulation via Kommadozeile [run.bat] gestartet wurde: ogs.exe ammer > ammer.txt)
- → txt-Datei enthält Ablauf der Simulation: welche Eingabe-Dateien wurden geladen, generiert und Details zu jedem Zeitschritt
- → Import der vtk-Dateien zuerst im OGS Data Explorer!

Simulationsergebnisse: VTK-Dateien

Simulationsergebnis: TecPlot-Dateien

Lade tec-Datei im EXCEL:

 vergleiche simulierte Wasserstände mit gemessenen Wasserständen von Beobachtungsbrunnen

nächste Vorlesung am 19.06.2015

mit Herrn Dr. Marc Walther (UFZ Leipzig)

Thema: Hydrologische Modellierung mit OpenGeoSys

→ Computer mitbringen!