

International Water Research Alliance Saxony

Impact of climate change on evapotranspiration and runoff

Thomas Pluntke, Dirk Pavlik, Christian Bernhofer

Technische Universität Dresden

Institute of Hydrology and Meteorology, Chair of Meteorology

Kiev, 10.07.2013

HELMHOLTZ | CENTRE FOR | ENVIRONMENTAL | RESEARCH - UFZ

Federal Ministry of Education and Research

funded by

Introduction / Overview

- How influence the projected climatic changes evapotranspiration and runoff?
- Complex interactions among meteorological elements, soil and plants have to be analysed.
- This is possible only with a coupled modelling approach.
- → Assessment of the climate change impact onto water balance components (runoff components, actual evapotranspiration) and other socio-economic sectors (e.g. agriculture, ecology, energy)

Kiev, 10.07.2013

Water Balance Modelling

- Investigation Area: Basin Inflow reservoir Dobrotvir – 2616 km²
- Model: Soil and Water Assessment Tool (SWAT) - conceptual river basin scale model for quantification of water and matter fluxes and the impact of changing conditions
- Parameterization based on input data, SWAT database
- Adaptations based on Plant
 Parameter Database of the
 University Giessen, Germany
- Calibration: 1981 1990
 Validation: 1971 1980

Regional climate projections : SRES scenarios A2, B1; analysis of periods 2021-50 and 2071-2100

nearly no impact until 2050at the end of century:

ETa increasing in Dec-Jun (due to higher temp.) and decrasing in Jul-Oct (due to water deficit)

Runoff decreasing the whole year, except Dec and Jan (due to water deficit)

Master Thesis: S. Fischer (2012) Scenarios of future climate and water balance of a Ukrainan basine and its relevance for an IWRM

Kiev, 10.07.2013 Pluntke et al TU Dresden

Slide 6 of 10

Flow duration curve

- FDC: probability that a certain discharge is exceeded
- Decreasing flow in 2071-2100 in comparison to present flow conditions (CBP) in all flow segments
- Strongest decrease during low flow and moderate flow conditions
- Reasons: reduced snow melt-induced floods, decrease in summer precipitation, increased evapotranspiration and annually reduced soil water storage

exceeding probability

Impacts on water related sectors

- Water management: reduced water availability esp. during summer -> reduced groundwater recharge, concentration of pollutants -> water supply
- Agriculture, forestry: longer growing season, temperature and drought stress, higher risk of pest infestation and crop losses, growing need for irrigation
- Ecology: emigration/immigration of species -> reorganization of communities, problem: migration/adaptation speed of species, risk for aquatic species, invasive alien species
- Energy business: chances for solar industry, decreasing viability or potential of hydropower, changes in energy consumption (heating/ cooling)

Kiev, 10.07.2013

Summary and Conclusion

- Climate change will impact all water related sectors.
- Increasing temperatures and solar radiation cause higher actual evapotranspiration rates in winter and spring.
- Decreasing summer and fall rainfall causes soil water depletion, decreasing actual evapotranspiration.
- Runoff is decrasing from spring till fall.
- Implications for water management, agriculture, forestry, ecology.
- Adaptation measures needed, especially for optimal water usage in the basin.

Kiev, 10.07.2013

Thank you for your attention!

Kiev, 10.07.2013 Pluntke et al. TU Dresden

Slide 10 of 10