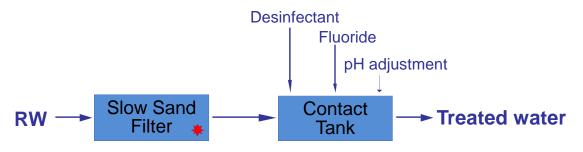
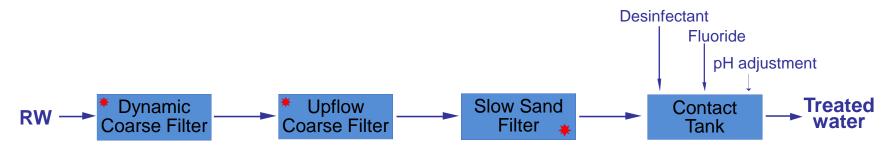


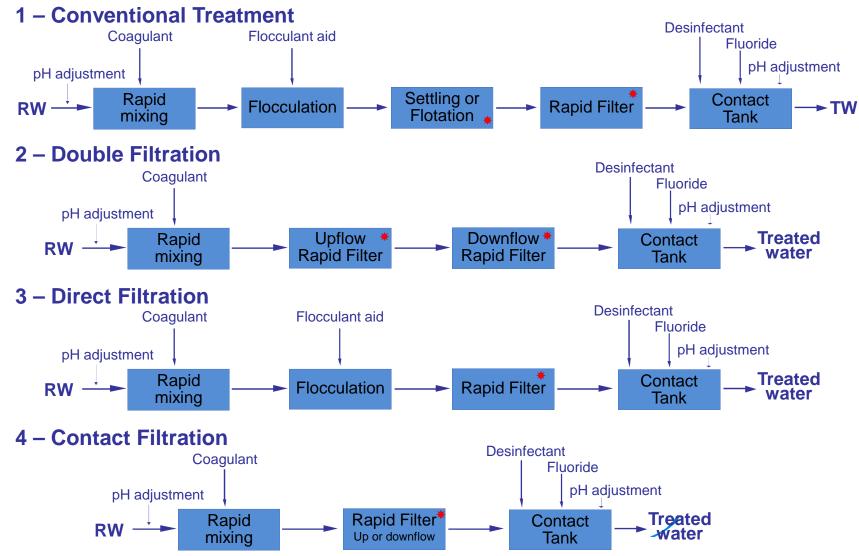
Options in Water Treatment For Paranoá Lake


Profa. Cristina Celia Silveira Brandão Universidade de Brasília Departamento de Engenharia Civil e Ambiental cbrandao@unb.br



Processes Trains Without Addition of Coagulant

1 – Slow sand filtration


2 – Multi stage filtration

Processes that generate residue

Processes Trains With Addition of Coagulant

IWAS Brazil ÁGUA-DF

Unive

Slow sand filtration experiments

Author(s)/Year	Main target	Scale	Remarks	Results
Sá, 2002	Removal of algae and cyanobacteria	Pilot	Water spiked with <i>Microcysts aeruginosa</i> and microcistins. Comparison of traditional SSF with SSF with GAC layer	 Under optimized conditions and after the ripening period: Tubidity < 0.5 NTU Very high removal of <i>E.Coli</i> with a significant number of
Arantes, 2004	Removal of algae and cyanobacteria	Pilot	Paranoá water spiked with <i>Cylindrospermopsis</i> <i>raciiborskii</i> and saxitoxins.	 samples with no EC detected 2 log to 3 log removal of <i>Cryptosporidium</i> oocystis
Peralta, 2005	Removal of Cryptosporidium oocistys	Pilot	Paranoá water spiked with Clostridium perfringens and Cryptosporidium oocistys.	 Can cope with up to 10⁵cells/mL of cyanobacteria without problems of
Sá, 2006	Removal of algae and cyanobacteria	Pilot	Water spiked with <i>Microcysts aeruginosa</i> and microcystins. Optimization of filtration rate, bed depth and media size	cyonotoxins in the treated water - Chlorophyll-a < 1 μg/L
Teixeira, on going	Removal of picoplanktonic algae	Pilot	Variation of filtration rate	 Tubidity < 0.2 NTU <i>E.Coli</i> not detected Chlorøphyll-a < 0.3 µg/L

Multi Stage Filtration Experiments

Multi Stage Filtration Experiments

Author(s)/Year	Main target	Scale	Remarks	Results
Mello, 1998	Removal of algae and cyanobacteria	Pilot	Variation of filtration rate on dynamic and upflow coarse filters	Under optimized conditions and after the ripening period: - Tubidity < 0.5 NTU
Souza Jr., 1999	Removal of algae and cyanobacteria	Pilot	Variation of filter media size of upflow coarse filters	 Very high removal of <i>E.Coli</i> with a significant number of
Carvalho, 2000	Removal of algae and cyanobacteria	Pilot	Use of coagulant before upflow corse filter	samples with no EC detected - 3 log to 4 log removal of
Melo, 2006	Removal of algae and cyanobacteria	Pilot	Paranoá water spiked with <i>Cylindrospermopsis</i> <i>raciiborskii</i> and saxitoxins.	 Cryptosporidium oocystis Can cope with up to 10⁵cells/mL of cyanobacteria without
Habe, 2005	Removal of Cryptosporidium oocistys	Pilot	Paranoá water spiked with <i>Cryptosporidium</i> oocistys.	 problems of cyonotoxins in the treated water Minimize the risk of cell breakthrough when RW contains 10⁶ cells/mL of cyanobacteria or more Chlorophyll-a < 1 µg/L

Contact, Direct an Double Filtration Experiments

Contact, Direct an Double Filtration Experiments

Author(s)/Year	Main target	Scale	Remarks	Train	Results	
Cezar, 2000	Removal of algae and cyanobacteria	Pilot	Comparison of upflow and downflow rapid filtration preceded (or not) by upflow corse filtration	CF and DDF	Under optimized coagulation conditions (pH and coagulant dose):	
Melo, 2003	Removal of algae and cyanobacteria	Pilot	Upflow coarse filter followed by downflow sand filter. Optimization of filtration rate and upflow coarse filter media size.	DDF	 Tubidity < 0.5 NTU Chlorophyll-a ~ 1 μg/L 3 log to 4 log removal of <i>Cryptosporidium</i> oocystis during steady state filtration. In early stages of the filtration run (first 30 min) the efficiency is about 0.5 log lower Filtration rates up to 450 m/d could be used in DDF without compromise the water quality 	
Braga, 2005	Removal of algae	Pilot	Upflow coarse filter followed by downflow sand filter. Optimization of filtration rate and sand media size. Comparison of alum with PAC	DDF		
Paiva, 2006	Removal of Cryptosporidium oocistys	Pilot	Paranoá water spiked with <i>Cryptosporidium oocistys</i> .	DFCF		m/d could be used in
Nascimento, 2009	Removal of Cryptosporidium oocistys	Pilot	Paranoá water spiked with <i>Cryptosporidium oocistys</i> .	UFCF		
Schleicher, 2011	Removal of algae and cyanobacteria	Pilot	Comparison of alum with chitosan as coagulant. Water spiked with with <i>Microcysts aeruginosa</i>	UFCF		

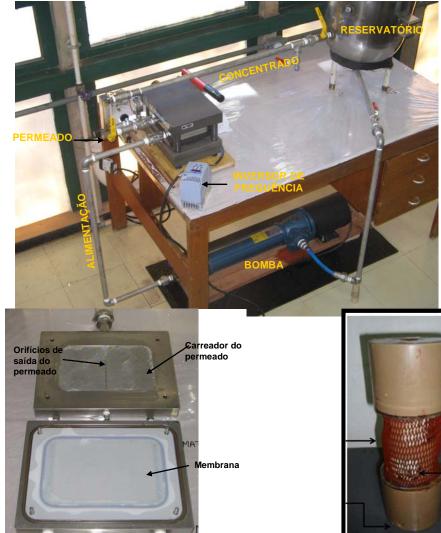
Settling and Dissolved Air Flotation Experiments

Author(s)/Year	Main target	Scale	Remarks	Train	Results
Bezerra, 2005	Removal of cyanobacteria and cyanotoxins release from sludge	Bench	Paranoá water spiked with <i>Cylindrospermopsis</i> <i>raciiborskii.</i> Comparison of settling and DAF	SET and DAF	Under optimized coagulation conditions (pH and coagulant dose) - DAF was more efficient (~ 90%) than sedimentation (~
Ermel, 2009	Cyanotoxins release from settled sludge	Bench	Paranoá water spiked with <i>Cylindrospermopsis</i> <i>raciiborskii</i> and <i>Microcysts</i> <i>aeruginosa</i> . Comparison of alum with ferric chloride	SET	 80%) and less influenced by flotation rate variation Saxitoxins ere realized from the sludge after 4 to 10 days of storage and underwent transformation, which was influenced by coagulation pH but not influenced by the coagulant

Settling and Dissolved Air Flotation Experiments

Author(s)/Year	Main target	Scale	Remarks	Train	Results
Araújo and	Removal of	Benc	Variation of surface	DAF	Under optimized
Oliveira, 2009	algae	h	flow rate, recycle		coagulation conditions
			ratio, and		(pH and coagulant dose):
Dinto o Dontoo	Demovel of	Dilat	flocculation time		- Tubidity < 1 NTU with
Pinto e Dantas Filho, 2010	Removal of	Pilot	Variation of surface flow rate, recycle	DAF	flotation rates up to 360m/d
1 1110, 2010	algae		ratio, and		- Chlorophyll-a ~ 1 µg/L
			flocculation time		- Recycle of 10% and
		a succession of the second sec			flocculation times of 7
					minutes was shown to
					be the best
					operational condition.
		A ANA A			
		and party and the			
		0			
ARA		and strain			

1-1-1



Settling and Dissolved Air Flotation Experiments

Author(s)/Year	Main target	Scale	Remarks	Train	Results
Capelete, 2011	Removal of algae and cyanobacteria. THM formation potencial	Bench	Paranoá water spiked with <i>Microcysts</i> <i>aeruginosa.</i> Comparison of alum with chitosan as coagulant	SET	 Under optimized coagulation conditions (pH and coagulant dose) Tubidity ~ 0.3 NTU, independently of RW quality (spiked or not with <i>M. aeruginosa</i>) when chitosan was the coagulant Tubidity ~ 0.4 NTU and ~ 0.8 NTU, respectively, for Paranoá water and spiked water, when alum was the coagulant UV254 removal ~ 40% NO THM formation observed

Membrane Technology Experiments

Membrane Technology Experiments

Author(s)/Year	Main target	Scale	Remarks	Туре	Results
Tsuzuky e	Removal of algae	Continuous	Influence of	HSMF	Flocculation time of 30
Corrêa, 2012	and NOM	flow bench	flocculation time.		minutes led to lower
			Comparison of		permeability decay
			alum with		over 4 hours run
			chitosan as		without cleaning.
			coagulant		At optimum
					flocculation conditions:
Schleicher, on	Removal of	Continuous	Influence of pH	NF	Preliminary results
going	bisphenol A,	flow bench	and Paranoá		shows removal over
	estrone, estradiol		lake water. Two		90% and negligible
	and		nanofiltration		influence of the
	ethinylestradiol		membrane.		Paranoá lake water
					whem compared to
					DW matrix

Final Remarks

Paranoá lake water can be treated by a variety of processes due to its "good" quality regarding turbidity, algal density, and organic matter.

Nevertheless, multiple barriers treatments should be used considering the risks involved due to the fact that Paranoá lake water receives the effluent of WWTP and is not a protected reservoir.

Emerging substances and emerging pathogens is a mater of concern worldwide and also in DF, therefore future research has to focus in this issues both optimizing "traditional" processes as well advanced processes